พันธุศาสตร์
พันธุศาสตร์ (อังกฤษ: genetics) เป็นสาขาหนึ่งของชีววิทยา ศึกษาเกี่ยวกับยีน การถ่ายทอดลักษณะทางพันธุกรรม และความหลากหลายทางพันธุกรรมของสิ่งมีชีวิต
พันธุศาสตร์ว่าด้วยโครงสร้างเชิงโมเลกุลและหน้าที่ของยีน พฤติกรรมของยีนในบริบทของเซลล์สิ่งมีชีวิต (เช่น ความเด่นและอีพิเจเนติกส์) แบบแผนของการถ่ายทอดลักษณะจากรุ่นสู่รุ่น การกระจายของยีน ความแตกต่างทางพันธุกรรมและการเปลี่ยนแปลงของพันธุกรรมในประชากรของสิ่งมีชีวิต (เช่นการศึกษาหาความสัมพันธ์ของยีนตลอดทั่วทั้งจีโนม) เมื่อถือว่ายีนเป็นพื้นฐานของสิ่งมีชีวิตทั้งหมด พันธุศาสตร์จึงเป็นวิชาที่นำไปใช้ได้กับสิ่งมีชีวิตทุกชนิด ทั้งไวรัส แบคทีเรีย พืช สัตว์ และมนุษย์ (เวชพันธุศาสตร์)
มีการสังเกตมาแต่โบราณแล้วว่าสิ่งมีชีวิตมีการถ่ายทอดลักษณะจากรุ่นสู่ รุ่น ซึ่งเป็นความรู้ที่มนุษย์ใช้ในการปรับปรุงพันธุ์พืชและสัตว์ด้วยวิธีการคัดเลือกพันธุ์ อย่างไรก็ดี ความรู้พันธุศาสตร์สมัยใหม่ที่ว่าด้วยการพยายามทำความเข้าใจกระบวนการการ ถ่ายทอดลักษณะเช่นนี้เพิ่งเริ่มต้นในคริสต์ศตวรรษที่ 19 โดยเกรเกอร์ เมนเดล แม้เขาไม่สามารถศึกษาเจาะลึกไปถึงกระบวนการทางกายภาพของการถ่ายทอดลักษณะทาง พันธุกรรม แต่ก็ค้นพบว่าลักษณะที่ถ่ายทอดนั้นมีแบบแผนจำเพาะ กำหนดได้ด้วยหน่วยพันธุกรรม ซึ่งต่อมาถูกเรียกว่า ยีน
ยีนคือส่วนหนึ่งของสายดีเอ็นเอซึ่งเป็นโมเลกุลที่ประกอบด้วยนิวคลีโอไทด์สี่ ชนิดเชื่อมต่อกันเป็นสายยาว ลำดับนิวคลีโอไทด์สี่ชนิดนี้คือข้อมูลทางพันธุกรรมที่ถูกเก็บและมีการถ่าย ทอดในสิ่งมีชีวิต ดีเอ็นเอตามธรรมชาติอยู่ในรูปเกลียวคู่ โดยนิวคลีโอไทด์บนแต่ละสายจะเป็นคู่สมซึ่งกันและกันกับนิวคลีโอไทด์บนสายดี เอ็นเออีกสายหนึ่ง แต่ละสายทำหน้าที่เป็นแม่แบบในการสร้างสายคู่ขึ้นมาได้ใหม่ นี่คือกระบวนการทางกายภาพที่ทำให้ยีนสามารถจำลองตัวเอง และถ่ายทอดไปยังรุ่นลูกได้
ลำดับของนิวคลีโอไทด์ในยีนจะถูกแปลออกมาเป็นสายของกรดอะมิโน ประกอบกันเป็นโปรตีน ซึ่งลำดับของกรดอะมิโนที่มาประกอบกันเป็นโปรตีนนั้นถ่ายทอดออกมาจากลำดับของ นิวคลีโอไทด์บนดีเอ็นเอ ความสัมพันธ์ระหว่างลำดับของนิวคลีโอไทด์และลำดับของกรดอะมิโนนี้เรียกว่ารหัสพันธุกรรม กรดอะมิโนแต่ละชนิดที่ประกอบขึ้นมาเป็นโปรตีนช่วยกำหนดว่าสายโซ่ของกรดอะมิ โนนั้นจะพับม้วนเกิดเป็นโครงสร้างสามมิติอย่างไร โครงสร้างสามมิตินี้กำหนดหน้าที่ของโปรตีนนั้น ๆ ซึ่งโปรตีนมีหน้าที่ในกระบวนการเกือบทั้งหมดของเซลล์สิ่งมีชีวิต การเปลี่ยนแปลงที่เกิดกับดีเอ็นเอในยีนยีนหนึ่ง อาจทำให้เกิดการเปลี่ยนแปลงลำดับกรดอะมิโนในโปรตีน เปลี่ยนโครงสร้างโปรตีน เปลี่ยนการทำหน้าที่ของโปรตีน ซึ่งอาจส่งผลต่อเซลล์และสิ่งมีชีวิตนั้น ๆ ได้อย่างมาก
แม้พันธุกรรมของสิ่งมีชีวิตจะมีบทบาทมากในการกำหนดลักษณะและพฤติกรรมของ สิ่งมีชีวิต แต่ผลสุดท้ายแล้วตัวตนของสิ่งมีชีวิตหนึ่ง ๆ เป็นผลที่ได้จากการผสมผสานกันระหว่างพันธุกรรมและสิ่งแวดล้อมที่สิ่งมีชีวิต นั้น ๆ ประสบ ตัวอย่างเช่น ขนาดของสิ่งมีชีวิตไม่ได้ถูกกำหนดโดยยีนเพียงอย่างเดียว แต่ได้รับผลจากอาหารและสุขภาพของสิ่งมีชีวิตนั้น ๆ ด้วย เป็นต้น
ดีเอ็นเอเป็นโมเลกุลพื้นฐานของการถ่ายทอดลักษณะทางพันธุกรรม
ดีเอ็นเอแต่ละสายประกอบขึ้นจากสายโซ่นิวคลีโอไทด์จับคู่กันรอบกึ่งกลางกลาย
เป็นโครงสร้างที่ดูเหมือนบันไดซึ่งบิดเป็นเกลียว
ยีน
ใน ปัจจุบัน นิยามของยีนหรือหน่วยพันธุกรรม คือส่วนหนึ่ง (หรือ ลำดับ) ของ DNA ที่สามารถถูกถอดรหัสออกมาเป็นชุดของกระบวนการหรือคำสั่งการทำงานของเซลล์ได้ (เช่น กระบวนการเพื่อ "สร้างโมเลกุลเมลานิน" เป็นต้น) อาจสามารถเปรียบ "ยีน" หนึ่ง ๆ ได้กับ "คำ" หนึ่ง ๆ ในภาษา โดยนิวคลีโอไทด์แต่ละตัวที่ประกอบขึ้นมาเป็นยีน เปรียบได้กับ "ตัวอักษร" ที่ประกอบขึ้นมาเป็นคำประวัติศาสตร์
เกรเกอร์ เมนเดล
พันธุศาสตร์เมนเดลและพันธุศาสตร์คลาสสิก
พันธุศาสตร์ยุคใหม่มีที่มาจากงานของเกรเกอร์ โยฮัน เมนเดล บาทหลวงออกัสตินและนักวิทยาศาสตร์ชาวเยอร์มัน-เช็ค บทความงานวิจัยของเขา "Versuche über Pflanzenhybriden" ("การทดลองในพืชพันธุ์ผสม") ซึ่งนำเสนอต่อ Naturforschender Verein (สมาคมงานวิจัยธรรมชาติ) ที่เบอร์โนใน ค.ศ. 1865 ได้ติดตามการถ่ายทอดลักษณะบางอย่างในต้นถั่วและอธิบายการถ่ายทอดนี้ในเชิงคณิตศาสตร์[3] แม้งานของเมนเดลจะพบแบบแผนการถ่ายทอดในลักษณะเพียงอย่างของต้นถั่วเท่านั้น ก็ตาม แต่ก็บ่งชี้ว่าลักษณะต่าง ๆ นั้นมีการส่งต่อจริงและไม่ได้เกิดขึ้นมาใหม่ และแบบแผนของการถ่ายทอดของลักษณะหลาย ๆ อย่างก็สามารถอธิบายได้ด้วยกฎและสัดส่วนง่าย ๆงานของเมนเดลไม่ได้รับความสนใจมากนักกระทั่งคริสต์ทศวรรษ 1890 หลังเมนเดลเสียชีวิตไปแล้ว นักวิทยาศาสตร์ท่านอื่นได้ศึกษาเรื่องเดียวกันและได้ค้นพบสิ่งที่เมนเดลเคยค้นพบมาก่อนแล้ว วิลเลียม เบทสันเป็นผู้เสนองานของเมนเดลและได้เสนอคำว่า genetics ขึ้นใน ค.ศ. 1905[4][5] (ส่วนคำคุณศัพท์ genetic ซึ่งมาจากคำกรีกว่า genesis—γένεσις, หมายถึง "จุดกำเนิด" นั้นมีใช้ก่อน genetics ซึ่งเป็นคำนาม และมีการนำมาใช้ในแวดวงชีววิทยาตั้งแต่ ค.ศ. 1860) [6] และได้นำคำนี้ไปใช้ในความหมายว่าเป็นการศึกษาเกี่ยวกับการถ่ายทอดลักษณะของ สิ่งมีชีวิตในบทเสนอต่อที่ประชุม Third International Conference on Plant Hybridization (การประชุมนานาชาติว่าด้วยการผสมพันธุ์พืชครั้งที่ 3) ในกรุงลอนดอน ประเทศอังกฤษ เมื่อ ค.ศ. 1906[7]
หลังจากการค้นพบซ้ำงานของเมนเดล นักวิทยาศาสตร์หลายคนได้พยายามค้นหาว่าโมเลกุลใดในเซลล์ที่ทำให้เกิดการถ่าย ทอดลักษณะเช่นนี้ ใน ค.ศ. 1910 โธมัส ฮันท์ มอร์แกนเสนอว่ายีนนั้นอยู่บนโครโมโซม ซึ่งเป็นข้อสรุปที่ได้จากการศึกษาการกลายพันธุ์ของลักษณะตาสีขาวซึ่งมีการถ่ายทอดแบบสัมพันธ์กับเพศในแมลงวันผลไม้[8] ต่อมา ค.ศ. 1913 อัลเฟรด สตูร์เทแวนท์ซึ่งเป็นนักเรียนของมอร์แกนได้อาศัยปรากฏการณ์ความเชื่อมโยงของพันธุกรรมแสดงให้เห็นว่ายีนเรียงตัวกันเป็นเส้นบนโครโมโซม[9]
มอร์แกนสังเกตการถ่ายทอดลักษณะการกลายพันธุ์ที่เชื่อมโยงกับเพศซึ่งทำให้แมลงวัน Drosophila มีตาเป็นสีขาว ทำให้สามารถตั้งสมมติฐานได้ว่ายีนอยู่บนโครโมโซม
อณูพันธุศาสตร์
แม้ จะทราบแล้วว่ายีนอยู่บนโครโมโซม แต่โครโมโซมก็ประกอบจากโปรตีนและดีเอ็นเอ นักวิทยาศาสตร์จึงยังไม่ทราบว่าส่วนประกอบใดกันแน่บนโครโมโซมที่ทำให้เกิด การถ่ายทอดลักษณะ จน ค.ศ. 1928 เฟรเดอริค กริฟฟิธจึงพบปรากฏการณ์การแปลงพันธุ์ซึ่งแบคทีเรียที่ตายแล้วสามารถส่งสารพันธุกรรมเพื่อแปลงพันธุ์แบคทีเรียที่ยังมีชีวิตอยู่ได้ จากนั้น ค.ศ. 1944 ออสวอลด์ ธีโอดอร์ เอเวอรี, โคลิน แมคลีออด และแมคลิน แมคคาร์ที พบว่าโมเลกุลที่ทำให้เกิดการแปลงพันธุ์คือดีเอ็นเอ[10] การทดลองเฮอร์ชีย์-เชสใน ค.ศ. 1952 ก็แสดงให้เห็นว่าดีเอ็นเอเป็นสารพันธุกรรมของไวรัสที่ทำให้เกิดการติดเชื้อ ในแบคทีเรีย เป็นหลักฐานอีกอย่างที่สนับสนุนว่าดีเอ็นเอเป็นโมเลกุลที่ทำให้เกิดการถ่าย ทอดลักษณะ[11]เจมส์ ดี. วัตสัน และฟรานซิส คริก ค้นพบโครงสร้างของดีเอ็นเอใน ค.ศ. 1953 โดยใช้งานเอกซเรย์ผลิกศาสตร์ของโรซาลินด์ แฟรงคลินและมอริซ วิลคินส์ซึ่งบ่งชี้ว่าดีเอ็นเอมีโครงสร้างเป็นเกลียว[12][13] ทั้งสองเสนอว่าดีเอ็นเอมีโครงสร้างเป็นเกลียวคู่ มีสายดีเอ็นเอสองสาย นิวคลีโอไทด์บนแต่ละสายชี้เข้าหากัน และตรงกันกับนิวคลีโอไทด์ที่เป็นคู่กันบนอีกสายหนึ่ง ทำให้มีลักษณะคล้ายบันไดที่บิดเป็นเกลียว[14] โครงสร้างนี้แสดงให้เห็นว่ามีข้อมูลพันธุกรรมอยู่ในรูปของลำดับนิวคลีโอไทด์ บนสายดีเอ็นเอแต่ละสาย และยังบ่งชี้ว่าดีเอ็นเอน่าจะมีวิธีจำลองตัวเองที่เรียบง่าย คือหากแต่ละสายแยกออกจากกัน ก็สามารถสร้างสายคู่กันได้ใหม่จากลำดับนิวคลีโอไทด์บนสายนั้น ๆ เอง
แม้โครงสร้างของดีเอ็นเอจะทำให้รู้ถึงกลไกการถ่ายทอดลักษณะ แต่วิธีที่ดีเอ็นเอส่งผลต่อการทำงานของเซลล์นั้นก็ยังไม่เป็นที่ทราบ หลังจากนั้นนักวิทยาศาสตร์พยายามทำความเข้าใจว่าดีเอ็นเอควบคุมการผลิตโปรตีนได้อย่างไร ต่อมาจึงค้นพบว่าเซลล์ใช้ดีเอ็นเอเป็นแบบพิมพ์สำหรับสร้างเมสเซนเจอร์อาร์เอ็นเอ (โมเลกุลที่ประกอบจากนิวคลีโอไทด์ คล้ายดีเอ็นเอ) ที่ตรงกัน จากนั้นลำดับนิวคลีโอไทด์บนอาร์เอ็นเอจะถูกใช้สร้างลำดับกรดอะมิโน ซึ่งจะประกอบเป็นโปรตีน ลักษณะการแปลรหัสระหว่างนิวคลีโอไทด์ไปเป็นกรดอะมิโนนี้เรียกว่ารหัสพันธุกรรม
การมีความเข้าใจเกี่ยวกับหลักการทางโมเลกุลของการถ่ายทอดลักษณะทางพันธุ กรรมทำให้มีการศึกษาวิจัยต่อยอดได้อีกเป็นจำนวนมาก การค้นพบที่สำคัญครั้งหนึ่งคือการพบวิธีการหาลำดับดีเอ็นเอด้วยการใช้ลำดับหยุดของสายดีเอ็นเอโดยเฟรเดอริก แซงเกอร์เมื่อ ค.ศ. 1977 ซึ่งทำให้นักวิทยาศาสตร์สามารถอ่านลำดับนิวคลีโอไทด์บนโมเลกุลดีเอ็นเอได้[15] จากนั้น ค.ศ. 1983 แครี แบงคส์ มุลลิส ได้พัฒนาปฏิกิริยาลูกโซ่พอลิเมอเรสทำให้สามารถแยกและเพิ่มจำนวนบริเวณหนึ่ง ๆ ของดีเอ็นเอจากสารผสมได้[16] เทคนิคเหล่านี้รวมถึงเทคนิคอื่น ๆ ถูกพัฒนาต่อยอดจนเกิดเป็นโครงการจีโนมมนุษย์และโครงการเอกชนของเซเลราจีโนมิกส์ทำให้สามารถหาลำดับจีโนมมนุษย์ทั้งหมดได้สำเร็จใน ค.ศ. 2003[17]
รูปแบบของการถ่ายทอดลักษณะ
การถ่ายทอดแบบแยกส่วนและกฎของเมนเดล
ดูบทความหลักที่: พันธุศาสตร์ของเมนเดล
ตารางแสดงการผสมพันธุ์ระหว่างต้นถั่วสองต้นที่มีดอกเป็นสีม่วงแบบเฮเทอโรไซ
กัส แสดงให้เห็นการถ่ายทอดลักษณะการมีดอกสีม่วง (B) และสีขาว (b)
ในกรณีต้นถั่วซึ่งเป็นสิ่งมีชีวิตที่มีโครโมโซมสองชุด แต่ละยีนของต้นถั่วจะมีสองอัลลีล ที่ได้รับการถ่ายทอดมาจากต้นถั่วพ่อแม่[20] สิ่งมีชีวิตหลายชนิดรวมทั้งมนุษย์ก็มีแบบแผนการถ่ายทอดลักษณะในรูปแบบนี้ เช่นกัน สิ่งมีชีวิตที่มีโครโมโซมสองชุด ซึ่งทั้งสองอัลลีลในยีนเดียวกันนั้นเหมือนกันเรียกว่าเป็นฮอโมไซกัสหรือเป็นพันธุ์แท้ที่โลคัสของยีนนั้น ในขณะที่สิ่งมีชีวิตที่ในยีนเดียวกันมีอัลลีลสองแบบไม่เหมือนกัน เรียกว่าเป็นเฮเทอโรไซกัสหรือเป็นพันธุ์ทาง
อัลลีลที่สิ่งมีชีวิตได้รับมานั้นเรียกว่าจีโนไทป์หรือรูปแบบพันธุกรรม ส่วนลักษณะที่สังเกตได้นั้นเรียกว่าฟีโนไทป์หรือรูปแบบปรากฏ เมื่อสิ่งมีชีวิตหนึ่ง ๆ มีความเป็นเฮเทอโรไซกัสในยีนหนึ่ง ส่วนใหญ่แล้วอัลลีลอันหนึ่งในนั้นจะเป็นลักษณะเด่นซึ่งจะแสดงออกมาเป็นฟีโนไทป์ของสิ่งมีชีวิตนั้น ๆ ในขณะที่อีกอัลลีลหนึ่งจะเป็นลักษณะด้อยซึ่ง ถูกบดบังไว้ไม่แสดงออก บางอัลลีลมีลักษณะเด่นแบบไม่สมบูรณ์ โดยจะแสดงออกเป็นฟีโนไทป์ที่มีลักษณะผสมกัน หรือมีความเป็นลักษณะเด่นร่วมกันโดยทั้งสองอัลลีลสามารถแสดงออกพร้อมกันได้[21]
เมื่อสิ่งมีชีวิตมีการสืบพันธุ์แบบอาศัยเพศ ลูกจะได้รับอัลลีลจากพ่อและแม่ต้น/ตัวละหนึ่งอัลลีลแบบสุ่ม ลักษณะการถ่ายทอดและการแยกเป็นส่วนชัดของอัลลีลเช่นนี้รวมเรียกว่ากฎข้อแรกของเมนเดลหรือกฎการแยกเป็นส่วนชัด
สัญลักษณ์และการบันทึกข้อมูล
แผนภาพพงศาวลีสามารถใช้ในการแสดงแบบแผนการถ่ายทอดลักษณะของโรคทางพันธุกรรมได้
ในการศึกษาวิจัยที่เกี่ยวข้องกับการผสมพันธุ์และการสืบทอดเผ่าพันธุ์ (โดยเฉพาะเมื่อเกี่ยวข้องกับกฎของเมนเดล) มักเรียกรุ่นพ่อแม่ว่าเป็นรุ่น "P" (parent) และรุ่นลูกเรียกว่ารุ่น "F1" (first filial) เมื่อรุ่น F1 มีลูกอีกก็จะเรียกว่ารุ่น "F2" (second filial) แผนผังในการทำนายผลที่เกิดจากการผสมพันธุ์ที่ใช้บ่อยชนิดหนึ่งคือตารางพันเน็ต
นอกจากนี้ในการศึกษาวิจัยที่เกี่ยวข้องกับโรคทางพันธุกรรมในมนุษย์ นักพันธุศาสตร์มักใช้แผนภาพเพ็ดดีกรีในการอธิบายการถ่ายทอดลักษณะที่เป็นโรคนั้น ๆ [23] โดยแสดงให้เห็นการถ่ายทอดลักษณะของความเป็นโรคในครอบครัว
ปฏิสัมพันธ์ระหว่างยีน
ความสูงของมนุษย์นั้นเป็นลักษณะที่เกิดจากปฏิสัมพันธ์ที่ซับซ้อนระหว่างยีนหลายตัว ข้อมูลเมื่อ ค.ศ. 1889 ของฟรานซิส กาลตันแสดง
ให้เห็นถึงความสัมพันธ์ระหว่างความสูงของลูกกับความสูงเฉลี่ยของพ่อแม่
ซึ่งแม้ค่าความสูงจะมีความสัมพันธ์กัน แต่ก็ยังมีความแปรปรวนอยู่
แสดงว่าสิ่งแวดล้อมเป็นปัจจัยสำคัญปัจจัยหนึ่งที่กำหนดความสูงของมนุษย์
บางครั้งลักษณะหนึ่ง ๆ อาจมียีนที่ทำหน้าที่กำหนดลักษณะนั้น ๆ หลายตัว เช่นที่พบในดอกบลูอายแมรี่ (Omphalodes verna) ซึ่งมียีนที่มีอัลลีลซึ่งกำหนดสีของดอกเป็นสีฟ้าหรือสีม่วง กับอีกยีนหนึ่งซึ่งมีหน้าที่กำหนดว่าดอกจะมีสีหรือเป็นสีขาว หากพืชต้นหนึ่งมีอัลลีลซึ่งกำหนดให้มีสีขาวอยู่สองอัลลีล ดอกไม้ก็จะมีสีขาว ไม่ว่าจะมีการถ่ายทอดการกำหนดสีมาเป็นสีม่วงหรือสีฟ้าก็ตาม ปฏิกิริยาระหว่างยีนเช่นนี้เรียกว่าการข่มข้ามคู่ ซึ่งยีนที่สองนั้นมีการข่มยีนแรกแบบข้ามคู่[24]
ลักษณะถ่ายทอดหลายอย่างไม่ได้มีลักษณะแยกกันชัดเจนเหมือนการมีดอกสีขาวหรือม่วง แต่มีความผสมกลมกลืนต่อเนื่องกันไปเช่นความสูงหรือสีผิวของมนุษย์ ลักษณะถ่ายทอดเช่นนี้เรียกว่าลักษณะถ่ายทอดเชิงปริมาณ เป็นผลที่เกิดจากการควบคุมของยีนหลายตัว[25] ผลของยีนเหล่านี้ปรับเปลี่ยนไปมากหรือน้อยด้วยปัจจัยจากสิ่งแวดล้อม ระดับที่ผลของยีนมีต่อการเกิดเป็นลักษณะนั้นเรียกว่าอัตราพันธุกรรม[26] ซึ่งเป็นค่าสัมพัทธ์ โดยในสภาพที่สิ่งแวดล้อมมีความหลากหลายมาก ยีนก็จะมีความสามารถในการถ่ายทอดลักษณะน้อยลงไป ตัวอย่างเช่นความสูงของมนุษย์มีความสามารถในการถ่ายทอดลักษณะอยู่ที่ 89% สำหรับในสหรัฐอเมริกา แต่ในไนจีเรียซึ่งประชากรมีการเข้าถึงอาหารและบริการสาธารณสุขแตกต่างกันมากนั้น ความสามารถในการถ่ายทอดลักษณะความสูงของยีนอยู่ที่เพียง 62% เท่านั้น[27]
พื้นฐานทางโมเลกุลของการถ่ายทอดทางพันธุกรรม
ดีเอ็นเอและโครโมโซม
โครงสร้างของโมเลกุลดีเอ็นเอ เบสแต่ละคู่จับกันด้วยการสร้างพันธะไฮโดรเจนระหว่างสายดีเอ็นเอทั้งสองสาย
โดยปกติดีเอ็นเอมีลักษณะเป็นเกลียวคู่ นิวคลีโอไทด์แต่ละตัวในสายดีเอ็นเอมีคู่จับเฉพาะตัวในสายดีเอ็นเออีกสาย โดย A จับคู่กับ T และ C จับคู่กับ G ดังนั้นในดีเอ็นเอสายหนึ่ง ๆ จะมีข้อมูลครบถ้วน ซ้ำซ้อนกับสายที่คู่กัน โครงสร้างเช่นนี้เป็นพื้นฐานทางกายภาพของการถ่ายทอดลักษณะทางพันธุกรรม โดยการถ่ายแบบดีเอ็นเอจะเป็นการทำซ้ำข้อมูลทางพันธุกรรมโดยแบ่งสายดีเอ็นเอทั้งสองสายออกจากกัน ซึ่งแต่ละสายจะเป็นแม่พิมพ์สำหรับสร้างสายคู่ขึ้นใหม่[30]
ยีนจัดเรียงตัวเป็นเส้นตรงตามสายลำดับคู่เบสดีเอ็นเอ โดยในแบคทีเรียดีเอ็นเอเหล่านี้จะเรียงตัวเป็นวงกลมเรียกว่าจีโนฟอร์ ขณะที่ดีเอ็นเอของสิ่งมีชีวิตยูคารีโอต (รวมถึงพืชและสัตว์) จะเรียงตัวเป็นเส้นตรงหลายอันเรียกว่าโครโมโซม สายดีเอ็นเอเหล่านี้ส่วนใหญ่จะยาวมาก ตัวอย่างเช่นโครโมโซมที่ยาวที่สุดของมนุษย์มีความยาวประมาณ 247 ล้านคู่เบส[31] ดีเอ็นเอในโครโมโซมจะจับกับโปรตีนโครงร่างซึ่งจัดระเบียบและควบคุมการแสดงออกของดีเอ็นเอให้เกิดเป็นรูปร่างที่เรียกว่าโครมาติน ในเซลล์ยูคารีโอตนั้นโครมาตินมักประกอบด้วยนิวคลีโอโซม โดยส่วนของดีเอ็นเอจะพันล้อมโปรตีนฮิสโตน[32] สารพันธุกรรมที่มีการถ่ายทอดทั้งหมดของสิ่งมีชีวิต (โดยทั่วไปคือลำดับดีเอ็นเอทั้งหมดในทุกโครโมโซม) เรียกรวมว่าจีโนม
ขณะที่สิ่งมีชีวิตบางชนิดมีโครโมโซมชุดเดียว สัตว์และพืชส่วนใหญ่มีโครโมโซมสองชุด ทุกโครโมโซมจะมีคู่ และยีนทุกยีนมีสองชุด[20] อัลลีลทั้งสองของยีนหนึ่ง ๆ จะอยู่บนโลคัสเดียวกันของฮอมอโลกัสโครโมโซม แต่ละอัลลีลได้รับการถ่ายทอดมาจากพ่อหรือแม่
แผนภาพของวอลเธอร์ เฟลมมิง
เขียนขึ้นเมื่อ ค.ศ. 1882 แสดงการแบ่งเซลล์ของเซลล์ยูคาริโอต
มีการเพิ่มจำนวนซ้ำ การจับตัวแน่น และการเรียงตัวของโครโมโซม
ทำให้เมื่อเซลล์มีการแบ่งตัว
สำเนาของโครโมโซมจะแยกกันไปในเซลล์ลูกที่ได้จากการแบ่งตัว
การสืบพันธุ์
ดูบทความหลักที่: การสืบพันธุ์แบบอาศัยเพศ และ การสืบพันธุ์แบบไม่อาศัยเพศ
เมื่อเซลล์มีการแบ่งตัว จีโนมทั้งหมดจะถูกคัดลอกและแบ่งให้เซลล์ลูกทั้งสองเซลล์ละหนึ่งจีโนม กระบวนการนี้เรียกว่าไมโทซิส ซึ่งเป็นการสืบพันธุ์แบบง่ายที่สุดและเป็นพื้นฐานของการสืบพันธุ์แบบไม่อาศัยเพศ
ซึ่งพบได้ทั้งในสิ่งมีชีวิตเซลล์เดียวและหลายเซลล์
ทำให้ได้ทายาทซึ่งได้รับจีโนมมาจากรุ่นก่อนเพียงตัวเดียว
ทายาทของการสืบพันธุ์แบบไม่อาศัยเพศจะมีพันธุกรรมเหมือนรุ่นก่อนทุกประการ
และอาจเรียกว่าโคลนสิ่งมีชีวิตยูคาริโอตมักอาศัยการสืบพันธุ์แบบอาศัยเพศเพื่อให้ได้ทายาท ที่มีพันธุกรรมผสมกันจากพ่อแม่ กระบวนการนี้ในสิ่งมีชีวิตที่มีโครโมโซมหนึ่งชุดและที่มีโครโมโซมสองชุดมี ความแตกต่างกัน โดยเซลล์ซึ่งมีโครโมโซมชุดเดียวจะรวมกันและนำสารพันธุกรรมมารวมกันได้เป็น เซลล์ซึ่งมีโครโมโซมสองชุด ส่วนสิ่งมีชีวิตที่มีโครโมโซมสองชุดจะสร้างเซลล์ซึ่งมีโครโมโซมชุดเดียวโดย การแบ่งตัวเป็นสองเซลล์โดยไม่มีการทำซ้ำชุดดีเอ็นเอ เพื่อสร้างเซลล์ลูกที่ได้รับโครโมโซมจากพ่อแม่ต้น/ตัวละหนึ่งโครโมโซมแบบ สุ่ม ส่วนใหญ่ของวงจรชีวิตสัตว์และพืชส่วนมากมีเซลล์ที่มีโครโมโซมสองชุด โดยมีช่วงชีวิตที่เป็นเซลล์ที่มีโครโมโซมชุดเดียวเฉพาะเซลล์สืบพันธุ์อย่างสเปิร์มและไข่เท่านั้น
แบคทีเรียบางชนิดมีวิธีทำให้ได้รูปแบบพันธุกรรมใหม่โดยไม่ใช้การสืบ พันธุ์แบบอาศัยเพศอย่างเซลล์ที่มีโครโมโซมชุดเดียวหรือสองชุดที่กล่าวมาข้าง ต้น แต่ใช้วิธีการจับคู่เพื่อ ส่งชิ้นส่วนวงกลมดีเอ็นเอขนาดเล็กไปให้แบคทีเรียอีกตัวหนึ่ง นอกจากนี้ยังสามารถรับเอาชิ้นส่วนดีเอ็นเอที่ลอยอยู่ในสิ่งแวดล้อมเข้ามาใน จีโนมของตัวเองได้ กระบวนการนี้เรียกว่าการแปลงพันธุ์ กระบวนการเช่นนี้ทำให้เกิดการถ่ายทอดยีนในแนวราบ ซึ่งเป็นการส่งชิ้นส่วนของข้อมูลพันธุกรรมระหว่างสิ่งมีชีวิตที่ไม่ได้มีปฏิสัมพันธุ์หรือมีความเกี่ยวข้องกัน
การรวมใหม่และการเชื่อมโยง
ดูบทความหลักที่: การไขว้เปลี่ยนของโครโมโซม และ ความเชื่อมโยงของพันธุกรรม
ภาพวาด ค.ศ. 1916 ของโทมัส ฮันท์ มอร์แกน แสดงถึงการไขว้เปลี่ยนระหว่างโครโมโซม
ความน่าจะเป็นที่จะเกิดมีการไขว้เปลี่ยนของโครโมโซมระหว่างจุดสองจุดบน โครโมโซมสัมพันธ์กับระยะทางระหว่างสองจุดนั้น กล่าวคือเมื่อยีนบนจุดสองจุดอยู่ห่างกันระดับหนึ่ง โอกาสของการไขว้เปลี่ยนจะมากจนถือได้ว่าการถ่ายทอดยีนนั้นไม่มีความสัมพันธ์ กันหรือมีโอกาสถูกถ่ายทอดไปด้วยกันน้อยมาก ส่วนยีนที่อยู่ใกล้กันนั้นมีโอกาสเกิดการไขว้เปลี่ยนต่ำ ลักษณะเช่นนี้เรียกว่าความเชื่อมโยงของพันธุกรรม อัลลีลของยีนทั้งสองมีโอกาสสูงที่จะถูกถ่ายทอดไปด้วยกัน ปริมาณของความเชื่อมโยงกันระหว่างยีนชุดหนึ่งสามารถนำมาสร้างเป็นแผนที่เชิง เส้นของความเชื่อมโยงซึ่งอธิบายการจัดเรียงตัวของยีนคร่าว ๆ บนโครโมโซมได้[35]
การแสดงออกของยีน
รหัสพันธุกรรม
ดูบทความหลักที่: รหัสพันธุกรรม
รหัสพันธุกรรม: รหัสจากดีเอ็นเอจะถูกถอดออกมาเป็นโปรตีนผ่านเอ็มอาร์เอ็นเอด้วยรหัสชุดสาม
โมเลกุลอาร์เอ็นเอนำรหัส (เอ็มอาร์เอ็นเอ) นี้จะถูกใช้สร้างลำดับกรดอะมิโอที่ตรงกันผ่านกระบวนการที่เรียกว่าการแปลรหัส ซึ่งนิวคลีโอไทด์ชุดละ 3 ตัวเรียกว่าโคดอนจะตรงกันกับกรดอะมิโนชนิดใดชนิดหนึ่งในยี่สิบชนิดและคำสั่งปิดท้ายลำดับกรดอะมิโน ความตรงกันนี้เรียกว่ารหัสพันธุกรรม[36] ข้อมูลจะถูกส่งต่อในทิศทางเดียว จากลำดับนิวคลีโอไทด์ไปเป็นลำดับกรดอะมิโนของโปรีน แต่ไม่มีการส่งข้อมูลจากโปรตีนกลับมาเป็นลำดับดีเอ็นเอ กระบวนการนี้ฟรานซิส คริกเรียกว่า ความเชื่อหลักของอณูชีววิทยา[37]
กรดอะมิโนที่เปลี่ยนไปเพียงตัวเดียวทำให้ฮีโมโกลบินสร้างตัวเป็นเส้นใยขึ้นได้
การเปลี่ยนไปของนิวคลีโอไทด์เพียงตัวเดียวในดีเอ็นเอสามารถทำให้เกิดการ เปลี่ยนแปลงของลำดับกรดอะมิโนในโปรตีนได้ จากการที่โครงสร้างโปรตีนนั้นเกิดจากลำดับกรดอะมิโน ดังนั้นการเปลี่ยนแปลงของลำดับกรดอะมิโนบางแบบอาจเปลี่ยนคุณสมบัติของโปรตีน นั้น ๆ ได้ อาจโดยการทำให้โครงสร้างสูญเสียความเสถียรไปไม่สามารถคงรูปอยู่ได้ หรือเปลี่ยนพื้นผิวของโปรตีนทำให้มีปฏิกิริยากับโปรตีนหรือโมเลกุลอื่น เปลี่ยนแปลงไป เช่น โรคเลือดจางแบบมีเม็ดเลือดแดงรูปเคียวเป็นโรคพันธุกรรมชนิดหนึ่งในมนุษย์ซึ่งเกิดจากการเปลี่ยนแปลงของเบสคู่เดียวในบริเวณที่มีการถอดรหัสออกมาเป็นเบตาโกลบินซึ่งเป็นส่วนประกอบของฮีโมโกลบิน ทำให้มีการเปลี่ยนแปลงของกรดอะมิโนตัวหนึ่งจนสมบัติทางกายภาพของฮีโมโกลบินเปลี่ยนแปลงไป[40] ฮีโมโกลบินในผู้ป่วยโรคนี้จะจับกันเอง ก่อตัวเป็นเส้นใย ทำให้เม็ดเลือดแดงที่มีโปรตีนที่ผิดปกตินี้มีรูปร่างเปลี่ยนแปลงไปมีรูปร่างคล้ายเคียว เม็ดเลือดแดงที่มีรูปร่างเปลี่ยนไปนี้ไหลผ่านหลอดเลือดได้ไม่ดีเท่าเม็ดเลือดแดงปกติ ทำให้มีโอกาสเกิดการอุดตันหรือแตกสลาย เกิดเป็นอาการที่สัมพันธ์กับโรคดังกล่าว
ยีนบางตัวถอดรหัสออกมาเป็นอาร์เอ็นเอแต่ไม่มีการแปลรหัสออกมาเป็นโปรตีน อาร์เอ็นเอเหล่านี้เรียกว่าน็อน-โคดดิ้ง อาร์เอ็นเอ หรืออาร์เอ็นเอที่ไม่มีการอ่านรหัส อาร์เอ็นเอเหล่านี้บางครั้งจะจัดรูปร่างตัวเองเป็นโครงสร้างที่ทำหน้าที่สำคัญในเซลล์ เช่น อาร์เอ็นเอไรโบโซม และอาร์เอ็นเอถ่ายโอน นอกจากนี้อาร์เอ็นเอยังอาจมีหน้าที่ในการควบคุมการแสดงออกทางพันธุกรรมโดยปฏิกิริยาจับตัวผสมกับอาร์เอ็นเออื่น ๆ เช่น ไมโครอาร์เอ็นเอ
ธรรมชาติและการเลี้ยงดู
แมวไทยมีการกลายพันธุ์แบบตอบสนองต่ออุณหภูมิซึ่งส่งผลต่อการสร้างเม็ดสี
สิ่งแวดล้อมยังมีบทบาทมากในการเกิดผลของโรคทางพันธุกรรมในมนุษย์อย่างฟีนิลคีโตนูเรีย[42] ซึ่งการกลายพันธุ์ที่เกิดในผู้ป่วยจะทำให้ไม่สามารถย่อยสลายกรดอะมิโนฟีนิลอะลานีนได้ ทำให้เกิดการสะสมของสารตัวกลางซึ่งเป็นพิษ เกิดเป็นอาการต่าง ๆ ที่พบในผู้ป่วย เช่นสติปัญญาพัฒนาช้า หรือชักได้ หากผู้ป่วยโรคนี้ไม่กินอาหารที่มีกรดอะมิโนนี้ ก็จะไม่มีอาการใด ๆ
วิธีการหนึ่งที่เป็นที่นิยมในการศึกษาว่าธรรมชาติและการเลี้ยงดูมีผลมาก น้อยเพียงใดคือการศึกษาในแฝดเหมือนและแฝดต่าง ทั้งนี้แฝดเหมือนนั้นเกิดมาจากเซลล์ตัวอ่อนแรกเริ่มอันเดียวกัน จึงมีลักษณะทางพันธุกรรมเหมือนกันทุกประการ ในขณะที่แฝดต่างนั้นมีพันธุกรรมแตกต่างกัน เหมือนกับพี่น้องธรรมดาทั่วไป การเปรียบเทียบว่าแฝดแต่ละคู่มีการเกิดโรคหนึ่ง ๆ หรือไม่อย่างไร จะทำให้นักวิทยาศาสตร์สามารถสรุปได้ว่าธรรมชาติหรือการเลี้ยงดูมีผลมากน้อย กว่ากันอย่างไร ตัวอย่างหนึ่งที่ใช้วิธีการศึกษาในลักษณะนี้ซึ่งมีชื่อเสียงมากคือการศึกษาในแฝดสี่จีเนน ซึ่งเป็นแฝดเหมือนสี่คน ได้รับการวินิจฉัยเป็นโรคจิตเภททั้งหมด[43]
การควบคุมการแสดงออกของยีน
ดูบทความหลักที่: การควบคุมการแสดงออกของยีน
สิ่งมีชีวิตหนึ่ง ๆ อาจมียีนหลายพันยีน แต่ไม่ได้แสดงออกทั้ง
หมดพร้อม ๆ กัน
ยีนแต่ละยีนจะแสดงออกก็ต่อเมื่อกำลังมีการถอดรหัสเป็นเอ็มอาร์เอ็นเอเท่า
นั้น
โดยมีกระบวนการในเซลล์ที่ควบคุมการแสดงออกของยีนอยู่หลายวิธีเพื่อให้มีการ
ผลิตโปรตีนเมื่อเซลล์ต้องการใช้โปรตีนนั้น ๆ เท่านั้น ปัจจัยการถอดรหัสหรือทรานสคริปชันแฟคเตอร์เป็นโปรตีนควบคุมซึ่งจับกับตำแหน่งเริ่มต้นของยีน ทำหน้าที่กระตุ้นหรือยับยั้งการถอดรหัสยีนนั้น ๆ [44] ตัวอย่างเช่น ในจีโนมของ Escherichia coli มียีนจำนวนหนึ่งซึ่งจำเป็นในการสังเคราะห์กรดอะมิโนทริปโตเฟน
แต่ในสภาพแวดล้อมที่มีทริปโตเฟนเพียงพออยู่แล้ว
ยีนซึ่งช่วยในการสังเคราะห์ทริปโตเฟนนี้ก็ไม่มีความจำเป็น
การมีทริปโตเฟนจะส่งผลต่อการทำหน้าที่ของยีนโดยตรงโดยโมเลกุลของทริปโตเฟนจะ
จับกับทริปโตเฟนรีเพรสเซอร์ซึ่ง
เป็นปัจจัยการถอดรหัสตัวหนึ่ง
ทำให้โครงสร้างของรีเพรสเซอร์แปลี่ยนแปลงไปจนไปจับกับยีน
ยับยั้งการถอดรหัสและการแสดงออกของยีนนั้น ๆ ถือเป็นการควบคุมโดยการป้อนกลับทางลบของกระบวนการสังเคราะห์กรดอะมิโนทริปโตเฟน[45]
ปัจจัยการถอดรหัสจับกับดีเอ็นเอ ส่งผลต่อการถอดรหัสของยีนนั้น ๆ
ในเซลล์ยูคาริโอตจะมีความพิเศษของโครงสร้างโครมาตินซึ่ง มีส่วนในการควบคุมการถอดรหัสยีน ซึ่งส่วนใหญ่อาศัยการเปลี่ยนแปลงของดีเอ็นเอและโครมาตินที่อยู่ในภาวะเสถียร และสามารถถ่ายทอดไปยังเซลล์ลูกได้[46] ลักษณะเช่นนี้เรียกว่าการควบคุมแบบอีพิเจเนติกส์ (เหนือพันธุกรรม) เพราะเป็นการควบคุมที่อยู่นอกเหนือลำดับดีเอ็นเอและสามารถถ่ายทอดจากเซลล์ รุ่นหนึ่งไปสู่อีกรุ่นหนึ่ง จากลักษณะเหนือพันธุกรรมเช่นนี้เองทำให้เซลล์ต่างชนิดกันที่เพาะเลี้ยงใน อาหารเพาะเลี้ยงสามารถคงคุณสมบัติที่แตกต่างกันเอาไว้ได้ แม้ลักษณะเหนือพันธุกรรมเช่นนี้มักมีการเปลี่ยนแปลงไปในแต่ละช่วงของการ เจริญ แต่ลักษณะบางอย่างเช่นปรากฏการณ์การกลายพันธุ์ข้างเคียงก็มีการถ่ายทอดข้ามรุ่นได้และถือเป็นข้อยกเว้นของกฎทั่วไปที่มีอยู่ไม่มากนักในการถ่ายทอดลักษณะทางพันธุกรรมของดีเอ็นเอ[47]
การเปลี่ยนแปลงทางพันธุกรรม
การกลายพันธุ์
ดูบทความหลักที่: การกลายพันธุ์
การทำซ้ำของยีนทำให้เกิดความเหลือเฟือขึ้นมาได้
โดยยีนอันหนึ่งอาจกลายพันธุ์จนสูญเสียหน้าที่ไปได้
โดยไม่ทำให้เกิดอันตรายกับสิ่งมีชีวิตนั้น
ในสิ่งมีชีวิตที่อาศัยการไขว้เปลี่ยนของโครโมโซมเพื่อให้มีการแลกเปลี่ยนดีเอ็นเอและยีนใหม่นั้น ความผิดพลาดในกระบวนการนี้ระหว่างการแบ่งเซลล์แบบไมโอซิสก็สามารถทำให้เกิดการกลายพันธุ์ได้[51] ความผิดพลาดในการซ้อนทับกันของโครโมโซมนั้นมักเกิดในตำแหน่งที่มีลำดับสาร พันธุกรรมคล้ายคลึงกัน ทำให้โครโมโซมที่ซ้อนทับกันนั้นมีการจัดเรียงที่ผิดไป ดังนั้นบางบริเวณของจีโนมจึงมีโอกาสเกิดการกลายพันธุ์มากกว่าบริเวณอื่น ความผิดพลาดเหล่านี้มักทำให้เกิดการเปลี่ยนแปลงโครงสร้างลำดับดีเอ็นเอที่มี ขนาดใหญ่ เช่น การทำซ้ำ การพลิกกลับ หรือการหลุดหาย ของบริเวณใดบริเวณหนึ่งทั้งบริเวณ หรือเกิดการแลกเปลี่ยนชิ้นส่วนทั้งชิ้นของโครโมโซมคนละตัว (เรียกว่า การสับเปลี่ยน)
การคัดเลือกโดยธรรมชาติและวิวัฒนาการ
ดูบทความหลักที่: วิวัฒนาการ และ การคัดเลือกโดยธรรมชาติ
การกลายพันธุ์ทำให้สิ่งมีชีวิตมีจีโนไทป์เปลี่ยนแปลงไป
ซึ่งการเปลี่ยนแปลงนี้บางครั้งทำให้ฟีโนไทป์เปลี่ยนแปลงไปด้วย
การกลายพันธุ์ส่วนใหญ่มีผลเพียงเล็กน้อยต่อฟีโนไทป์ สุขภาพ และความสามารถใน
การสืบทอดเผ่าพันธุ์ของสิ่งมีชีวิต
การกลายพันธุ์ที่ทำให้เกิดการเปลี่ยนแปลงนั้นส่วนใหญ่ทำให้มีผลเสียต่อสิ่ง
มีชีวิต แต่บางครั้งก็อาจทำให้เกิดผลดี
การศึกษาวิจัยครั้งหนึ่งทำกับแมลงวัน Drosophila melanogaster
เสนอว่าหากการกลายพันธุ์นั้นทำให้เกิดการเปลี่ยนแปลงของโปรตีนที่สร้างจาก
ยีนนั้น ๆ การกลายพันธุ์เช่นนี้ 70% จะเป็นผลเสีย
ส่วนที่เหลืออาจมีผลดีเล็กน้อยหรือไม่มีผลใด ๆ[52]
แผนภูมิวิวัฒนาการของสิ่งมีชีวิตยูคาริโอต เปรียบเทียบจากลำดับยีนที่สมกัน
จีโนมของสิ่งมีชีวิตหนึ่ง ๆ อาจเปลี่ยนไปได้มากเมื่อผ่านไปหลายรุ่น ทำให้เกิดสิ่งที่เรียกว่าวิวัฒนาการ การคัดเลือกการกลายพันธุ์ที่เป็นประโยชน์สามารถทำให้สิ่งมีชีวิตสปีชี ส์หนึ่ง ๆ วิวัฒนาการไปจนมีความสามารถในการอยู่รอดในสิ่งแวดล้อมดีขึ้น เรียกว่าการปรับตัว[56] สปีชีส์ใหม่เกิดจากกระบวนการการเกิดสายพันธุ์ใหม่ ส่วนใหญ่มักเป็นผลจากการแบ่งแยกจากภูมิศาสตร์ที่ทำให้ประชากรของสิ่งมีชีวิตเดียวกันไม่มีโอกาสแลกเปลี่ยนยีนซึ่งกันและกัน[57] โดยวิชาที่นำเอาหลักการทางพันธุศาสตร์มาใช้ในการศึกษาชีววิทยาประชากรและวิวัฒนาการเรียกว่าการสังเคราะห์วิวัฒนาการสมัยใหม่
การเปรียบเทียบยีนที่เหมือนกันใน จีโนมของสิ่งมีชีวิตต่างชนิดกันอาจช่วยให้ผู้วิจัยสามารถคำนวณระยะห่างของ การวิวัฒนาการของสิ่งมีชีวิตได้ และอาจคำนวณได้ว่าสิ่งมีชีวิตนั้น ๆ เริ่มมีสายวิวัฒนาการแยกออกจากกันเมื่อไร (เรียกว่านาฬิกาโมเลกุล) [58] โดยทั่วไปมักถือว่าการเปรียบเทียบลักษณะทางพันธุกรรมของสิ่งมีชีวิตนั้น สามารถยืนยันการมีความสัมพันธ์ใกล้ชิดได้น่าเชื่อถือกว่าการเปรียบเทียบ ลักษณะปรากฏของสิ่งมีชีวิต ระยะห่างของการวิวัฒนาการของสิ่งมีชีวิตแต่ละชนิดจะสามารถนำมาสร้างเป็นแผนภูมิต้นไม้วิวัฒนาการซึ่งแสดงให้เห็นถึงบรรพบุรุษร่วมของ สิ่งมีชีวิตแต่ละชนิดและการแตกออกเป็นสปีชีส์ต่าง ๆ อย่างไรก็ดีการเปรียบเทียบนี้จะไม่แสดงให้เห็นถึงการถ่ายสารพันธุกรรม ระหว่างสิ่งมีชีวิตคนละชนิดกันได้ (เรียกว่าการถ่ายทอดยีนในแนวราบ พบบ่อยในแบคทีเรีย)
เทคโนโลยีและการศึกษาวิจัย
สิ่งมีชีวิตต้นแบบ
แมลงวันผลไม้ (Drosophila melanogaster) เป็นสิ่งมีชีวิตต้นแบบที่เป็นที่นิยมในการศึกษาวิจัยทางพันธุศาสตร์
สาเหตุที่ทำให้สิ่งมีชีวิตบางชนิดเป็นที่นิยมศึกษาวิจัยมากกว่าสิ่งมี ชีวิตอื่นสาเหตุหนึ่งคือความสะดวก การที่สิ่งมีชีวิตหนึ่ง ๆ มีระยะเวลาในการสืบทอดเผ่าพันธุ์จากรุ่นสู่รุ่นสั้น และสามารถมีกระบวนการแทรกแซงทางพันธุกรรมได้ ง่าย ทำให้สิ่งมีชีวิตนั้นเป็นที่นิยมใช้เป็นเครื่องมือศึกษาวิจัยทางพันธุศาสตร์ สิ่งมีชีวิตต้นแบบที่เป็นที่นิยมใช้แพร่หลายเช่น แบคทีเรีย Escherichia coli, พืช Arabidopsis thaliana, ยีสต์ขนมปัง Saccharomyces cerevisiae, หนอน Caenorhabditis elegans, แมลงวันผลไม้ Drosophila melanogaster, และหนู Mus musculus เป็นต้น
การแพทย์
เวชพันธุศาสตร์เป็นการศึกษาความสัมพันธ์ระหว่างความแตกต่างทางพันธุกรรมกับสุขภาพและโรคของมนุษย์[60] ในการหายีนที่อาจทำให้เกิดโรค ผู้วิจัยจะใช้หลักของการเชื่อมโยงทางพันธุกรรมและแผนภาพพงศาวลีในการหาตำแหน่งบนจีโนมที่สัมพันธ์กับโรค ซึ่งอาจเป็นสาเหตุของโรค ในการศึกษาวิจัยระดับประชากร ผู้วิจัยสามารถใช้หลักการสุ่มแบบเมนเดลในการหาตำแหน่งบนจีโนมที่สัมพันธ์กับโรคได้ ซึ่งจะเห็นประโยชน์ชัดเจนในโรคที่มียีนที่เกี่ยวข้องจำนวนมาก ซึ่งไม่สามารถระบุยีนเดี่ยว ๆ ที่ก่อโรคได้[61] เมื่อพบยีนที่อาจเป็นยีนก่อโรคแล้ว จะมีการศึกษาวิจัยต่อกับยีนที่คล้ายกันในสิ่งมีชีวิตต้นแบบ นอกจากการศึกษาเกี่ยวกับโรคพันธุกรรมแล้ว ยังมีการศึกษาเกี่ยวกับเภสัชพันธุศาสตร์ซึ่ง ศึกษาว่าลักษณะทางพันธุกรรมส่งผลต่อการตอบสนองต่อยาอย่างไร ทั้งนี้เป็นผลจากการที่เทคโนโลยีในการศึกษารูปแบบพันธุกรรมนั้นเข้าถึงได้ ง่ายขึ้น[62]นอกจากนี้ยังมีการพัฒนาความเข้าใจเกี่ยวกับความสัมพันธ์ระหว่างพันธุกรรมกับมะเร็งมากขึ้น ปัจจุบันเป็นที่ทราบกันว่าแต่ละคนได้รับถ่ายทอดโอกาสที่จะเกิดมะเร็งมาไม่เท่ากัน[63] และมะเร็งเองก็เป็นโรคที่พันธุกรรมเข้ามามีส่วนเกี่ยวข้องมากโรคหนึ่ง[64] การจะเกิดมีมะเร็งขึ้นในร่างกายได้นั้นต้องมีเหตุการณ์หลาย ๆ อย่างเกิดขึ้นสอดคล้องกัน โดยเมื่อเซลล์มีการแบ่งตัว ก็มีโอกาสที่จะเกิดการกลายพันธุ์ขึ้น แม้การกลายพันธุ์เหล่านี้จะไม่ได้รับการถ่ายทอดไปยังรุ่นถัดไปแต่ก็อาจทำให้ เซลล์ที่กลายพันธุ์มีการทำหน้าที่เปลี่ยนแปลงไปได้ บางครั้งอาจทำให้เซลล์ที่กลายพันธุ์มีการแบ่งตัวมากเกินปกติ ซึ่งในร่างกายจะมีกลไกที่คอยหยุดกระบวนการเช่นนี้อยู่โดยการส่งสัญญาณไปยัง เซลล์ที่แบ่งตัวมากเกินปกติให้กระตุ้นกระบวนการทำลายตัวเอง แต่บางครั้งก็มีการกลายพันธุ์เกิดขึ้นที่ตำแหน่งอื่นที่ทำให้เซลล์นั้น ๆ ไม่ตอบสนองต่อสัญญาณนี้ กระบวนการคัดเลือกตามธรรมชาติจะ ดำเนินไปตลอดเวลาทำให้การกลายพันธุ์สะสมในเซลล์บางเซลล์ ตามด้วยการแบ่งตัวมากผิดปกติอย่างควบคุมไม่ได้ และกลายเป็นเซลล์มะเร็ง ซึ่งจะแบ่งตัวเพิ่มกลายเป็นเนื้องอกมะเร็งและแพร่กระจายไปยังส่วนอื่น ๆ ของร่างกายในที่สุด
วิธีการศึกษาวิจัย
นักวิจัยสามารถดัดแปลงดีเอ็นเอได้ในห้องปฏิบัติการ โดยอาจใช้เอนไซม์ตัดจำเพาะใน การตัดชิ้นส่วนดีเอ็นเอในตำแหน่งลำดับซึ่งมีความจำเพาะ ทำให้สามารถสร้างชิ้นส่วนของดีเอ็นเอซึ่งสามารถคาดเดาได้ว่าจะมีลำดับเป็น อย่างไร[65] ชิ้นส่วนของดีเอ็นเอนี้สามารถทำให้มองเห็นได้ด้วยตาผ่านกระบวนการแยกทางไฟฟ้าโดยใช้เจล ซึ่งจะแยกชิ้นส่วนดีเอ็นเอต่าง ๆ ออกจากกันตามความยาวของชิ้นส่วนแต่ละชิ้นชิ้นส่วนดีเอ็นเอสามารถนำมาต่อกันได้ด้วยเอนไซม์ต่อเชื่อม และจากการที่นักวิจัยสามารถนำชิ้นส่วนดีเอ็นเอจากหลาย ๆ แหล่งที่นำมาต่อเข้าด้วยกันนั้น ทำให้สามารถสร้างดีเอ็นเอลูกผสมขึ้นมาได้ ซึ่งมีความสำคัญกับการตัดต่อพันธุกรรม นอกจากจะใช้ในการสร้างสิ่งมีชีวิตดัดแปลงพันธุกรรมแล้ว ยังเป็นขั้นตอนสำคัญในการสร้างพลาสมิด (ดีเอ็นเอรูปวงกลมขนาดเล็ก ๆ ที่มียีนจำนวนไม่มาก) นักวิจัยสามารถใส่พลาสมิดที่สร้างขึ้นเข้าไปในแบคทีเรีย และเพาะพันธุ์เพิ่มจำนวนโคลนของแบคทีเรียที่มีพลาสมิดนี้อยู่ ทำให้สามารถเพิ่มจำนวนชิ้นส่วนดีเอ็นเอที่ใส่ไว้นี้ได้ด้วยกระบวนการนี้ซึ่ง เรียกว่าการโคลนเชิงโมเลกุล
การหาลำดับดีเอ็นเอและจีโนมิกส์
การหาลำดับดีเอ็นเอเป็น เทคโนโลยีซึ่งเป็นหนึ่งในรากฐานสำคัญที่สุดในการศึกษาพันธุศาสตร์ เปิดโอกาสให้ผู้วิจัยสามารถหาลำดับของนิวคลีโอไทด์ในสายดีเอ็นเอได้ เทคนิคนี้พัฒนาขึ้นใน ค.ศ. 1977 โดยเฟรเดอริก เซงเกอร์และคณะ ปัจจุบันเทคนิคการหาลำดับดีเอ็นเอโดยใช้การหยุดการต่อโซ่ได้กลายเป็นเทคนิคที่ใช้กันทั่วไปในการหาลำดับดีเอ็นเอ[67] ด้วยเทคโนโลยีนี้ทำให้นักวิจัยสามารถค้นพบพันธุกรรมที่สัมพันธ์กับโรคในมนุษย์มาแล้วมากมายเมื่อเทคนิคในการหาลำดับดีเอ็นเอมีค่าใช้จ่ายลดลงเรื่อย ๆ จึงมีการหาลำดับดีเอ็นเอทั้งจีโนมของสิ่งมีชีวิตหลาย ๆ ชนิด โดยใช้คอมพิวเตอร์รวบรวมลำดับดีเอ็นเอจากสายสั้น ๆ หลาย ๆ สาย ซึ่งเป็นกระบวนการที่เรียกว่าการประกอบจีโนม[68] ต่อมาจึงมีการนำเทคโนโลยีเหล่านี้มาใช้ในการหาจีโนมมนุษย์ จนโครงการจีโนมมนุษย์สำเร็จใน ค.ศ. 2003[17] เทคโนโลยีใหม่ ๆ อย่างการหาลำดับดีเอ็นเอปริมาณมากทำ ให้ค่าใช้จ่ายในการหาลำดับดีเอ็นเอลดลงไปอีก โดยมีผู้วิจัยพยายามพัฒนาให้การหาจีโนมมนุษย์มีค่าใช้จ่ายลดลงในระดับหลัก พันดอลลาร์สหรัฐ[69]
จากการที่มีข้อมูลลำดับพันธุกรรมปริมาณมากจึงเริ่มมีการพัฒนาศาสตร์ใหม่อย่างจีโนมิกส์ซึ่งใช้คอมพิวเตอร์ในการค้นหาและวิเคราะห์รูปแบบที่มีอยู่ในจีโนมของสิ่งมีชีวิต โดยเป็นแขนงวิชาย่อยของชีวสารสนเทศ ซึ่งใช้คอมพิวเตอร์และคณิตศาสตร์ในการวิเคราะห์ข้อมูลทางชีววิทยาปริมาณมหาศาลได้
ไม่มีความคิดเห็น:
แสดงความคิดเห็น